by Jeffrey Shen Jeffrey Shen

HKE CTO Doug Sparks to Moderate Panel at MEMS Manufacturing 2022

Join Doug for an exciting line up of speakers regarding MEMS manufacturing March 1-3, 2022

Conference Topics

  • Global trends: market drivers, emerging applications, intellectual property factors, business roadmaps, government policy effects.
  • Technology aspects: process selection and development, PDKs and design rules, design for manufacturing, scaling, yield improvement, IP blocks, rapid prototyping, high volume production.
  • Business aspects: competitive and market dynamics, “pure play” foundries vs. platform-based design approaches, technology transfer, IDM vs. fabless approaches, supply chain challenges, ecosystem development, cost management and reduction.
  • Emerging technologies and processes: TSVs, 3D stacking, wafer level packaging, CMOS MEMS integration, EDA software and simulation tools, polymer and glass microfabrication, novel materials and coatings, lamination techniques, ultra-thin and flexible substrates.
  • Packaging, testing, and reliability: equipment, tools, methodologies, case studies.

MEMS manufacturing in China: recent trends and ecosystem developments
Doug Sparks, PhD
CTO and Executive Vice President
Hanking Electronics

China is seeing a dramatic surge in the growth of infrastructure for MEMS manufacturing. More than $160 billion dollars will be spent in China’s semiconductor industry in the next few years, at a rate of more than $10 billion per year. A significant portion of that investment will go into the MEMS segment. China is seeing a MEMS manufacturing transition from 100 and 150mm wafers to 200mm wafers, as well as a transition from government-institute fabs to commercial MEMS fabs and foundries. In addition, the high–volume MEMS manufacturing segment in China was previously post-wafer packaging and test, but now it is encompassing the entire wafer fabrication flow of the production cycle. This talk will provide a comprehensive overview of the major MEMS players, technology, investments, challenges and related services and devices available in China.

Register today! https://www.memsmanufacturing.com/register.html

by Jeffrey Shen Jeffrey Shen

A 2022 forecast for sensors/MEMS amid COVID, by industry insiders

Our CEO Lucy Huang was featured in this recent article in the latest issue of Fierce Electronics

Chip shortages have been seen in the global supply chain in the past year in MEMS as well as ICs (Integrated Circuits). This will drive investment and growth in the MEMS foundry business. Prior to the COVID shutdowns, the MEMS foundry business in China had already moved from 100- & 150-mm MEMS fabs as well as CMOS (Complementary Metal Oxide Semiconductor) surface micromachining to large 200mm MEMS wafer fabs.

There are several different basic MEMS process technologies such as capacitive, piezoresistive, magnetic and piezoelectric processes. To accommodate this range of processes a foundry must be flexible to meet a wide range of customer requirements. Materials like gold, scandium, zirconium, and process that are not compatible with CMOS foundries are able to be manufactured in dedicated MEMS wafer fabs.

This approach enables new technologies and materials like piezoelectric and IR sensors and actuators to be fabricated for large volume consumer applications. Turn-key solutions with PDKs (Process Design Kits) and developed processes are preferred by global and Chinese customers and Hanking Electronics offers design-fab-assembly services. We see many foundry customers who want to expand more local, Chinese wafer fab content to meet regional needs going forward into 2022 and beyond.

Read the full article

by Jeffrey Shen Jeffrey Shen

Hanking Organizer of China COMET 2021 Featured in CMM Magazine’s October Issue

Hanking Electronics is the organizer of China COMET 2021 and was featured in the October issue of CMM Magazine. Hanking partnered with MANCEF in launching a new China chapter and bringing the COMET conference to China. The virtual conference was held online September 16-17 and the live conference will be held in Shenyang, China November 22-23, with a tour of Hanking’s high volume MEMS fab.

by Jeffrey Shen Jeffrey Shen

Advances in MEMS-based Inertial Sensors

By Doug Sparks, CTO at Hanking Electronics

Microelectromechanical system (MEMS)-based inertial sensor commercialisation goes back around 50 years and has involved many interesting developments, new applications and acquisitions. Development of capacitive and piezoresistive silicon linear accelerometers began in the 1970s1. Airbags were the first high-volume application for these inertial sensors in the late 1980s and early 1990s. As with many MEMS devices, the aerospace industry led the development of angular rate sensors, also known as MEMS gyroscopes. Like the accelerometer, the automotive market provided the first high-volume applications for MEMS gyroscopes, starting in the mid-1990s2 with navigation assist, vehicle dynamic control (VDC) and roll-over protection (ROP) systems. Now, both of these sensors can be found in every smartphone, tablet, vehicle and wearable device.

Read the full article on CMM

by Jeffrey Shen Jeffrey Shen

Microsystem and semiconductor commercialisation in China

By Doug Sparks, CTO at Hanking Electronics

China has seen unprecedented growth in microsystem and semiconductor infrastructure in the past decade. This is due to the rise of its automotive and consumer markets and export of smart phones, tablets, drones and other microsystem and semiconductor enabled products. Historically, more than 90 percent of microelectromechanical systems (MEMS) devices such as accelerometers, gyroscopes, pressure sensors and radio frequency (RF) filters have been imported into China for product assembly. Virtually all the MEMS wafers are fabricated outside of the country and imported as wafers, chips or packaged devices. According to customs data, China imported semiconductor and MEMS chips worth US$304 billion in 2019, down 2.6 percent on a yearly basis1. Moreover, the State Council of China has declared that the country aims to increase its self-sufficiency rate of chips to 70 percent from the 30 percent level realised in 2019. This type of semiconductor manufacturing goal and the government funds associated with it have been ongoing for more than a decade. Read the full article on CMM.